
INTRODUCTION

Retinoic acid (RA) is a vitamin A metabolite re
quired for growth and development of the mammal
ian body.13 In skeletal biology studies, RA promoted
bone development and antler bone regeneration.1, 4

However, a study in humans showed that serum
RA levels outside the normal range elevated the
risk of hip fracture.5 In animal studies, doses of RA
or injection of vitamin A affected bone mass in a
sitespecific manner.6, 7 Thus, the role of RA in bone
health is dependent on cell type, cell function, and
tissue. RA binds to heterodimers of retinoic acid re
ceptors (RARs) and retinoid X receptors (RX
Rs).2, 8, 9 Upon binding, RARs are translocated to the
nucleus where they regulate the transcription of
various target genes. This intracellular signaling is
the primary biological pathway activated by alltrans

RA.9 There are three subtypes of RAR, α, β and γ,
that exhibit specific functions and different localiza
tions in mammalian tissues and cells. The roles of
these three subtypes in bone remodeling have
been investigated in knockout mouse studies.1, 10

Deficiency of RARγ is associated with trabecular
bone loss through increased bone resorption. Inter
estingly, RARαknockout mice showed normal bone
mass and remodeling.1 Therefore, among the RAR
subtypes, RARγ is considered the main subtype for
maintenance of bone mass.
The relationships among bone formation, miner

alization, and RA have been extensively investi
gated in osteoblasts, as boneforming cells that mi
grate to resorbing lacunae.1, 1113 Some studies have
indicated that addition of RA inhibited osteoblast
differentiation, while others have suggested that RA
promotes differentiation and bone formation in
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vivo.1416 Thus, knowledge on the effects of RA on
bone formation in vitro remains inadequate. Conse
quently, the role of RA both in vivo and in vitro is
still under debate. During bone remodeling, os
teoblasts associate with one another by moving
from their original location to sites of resorbing la
cunae on the bone surface. When these cells be
come condensed within the primordia, they shift
from a fibroblastic morphology to a cuboidal mor
phology and begin to secrete components of the
extracellular matrix. Thus, the cells are in direct
contact with not only the extracellular environment,
but also the neighboring cells. This contact be
tween cells requires cell migration, which is under
the control of cytoskeletal actin dynamics.1719 At
present, the relationship between RA and cell mi
gration is well known. In the present study, we ex
amined the relationship between RA and migration
of MC3T3E1 osteoblastlike cells (OBs). The effect
of RA on cell migration was found to be mediated
by upregulated mRNA expression of certain
migrationrelated genes, mainly profilin1 (PFN1).

MATERIAL AND METHODS

Cell culture
OBs (RIKEN BioResource Center, Saitama, Japan)
were cultured in αModified Eagle’s Medium (α
MEM ; Invitrogen, Carlsbad, CA, USA) supple
mented with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin at 37°C under 5% CO2 in a
humidified incubator. OBs were transfected with
siRNAs or expression vectors, and subsequently
trypsinized and replated after 24 h. RA (Nacalai
Tesque, Kyoto, Japan), BMS 195614, BMS 753, CD
2665, adapalene (Tocris Bioscience, Bristol, UK),
dimethyl sulfoxide (DMSO ; Wako Pure Chemical
Industries, Osaka, Japan), and ethanol (EtOH ;
Wako Pure Chemical Industries) were added to the
medium by direct pipetting. All agonists and an
tagonists were diluted in DMSO. In migration as
says, the cultures were preincubated with antago
nists for 30 min before addition of RA.

Migration assay
Scratch cell migration assays were performed as

described previously.17, 19 Briefly, OBs were plated
on type I collagencoated 3.5cm dishes at a den
sity of 5×106 cells/cm2 in αMEM supplemented
with 1% FBS or 10% charcoaltreated FBS (GE
Healthcare Japan, Tokyo, Japan). The cells were
incubated for 12 h and then scratched with a 200μl
pipette tip. Images were obtained at 0 and 24 h af
ter the scratch creation and subjected to quantita
tive analyses with image analysis software (All in
One Microscopy ; Keyence, Osaka, Japan).

Gene expression assays
Gene expression was measured as previously de
scribed.20 Total RNA was extracted using an
RNeasy Kit (Qiagen KK, Tokyo, Japan) according
to the manufacturer’s protocol. Firststrand cDNA
was produced from the total RNA with a High Ca
pacity cDNA Reverse Transcription Kit (Applied
Biosystems, San Francisco, CA, USA). Quantitative
realtime PCR was performed in a Step One Real
Time PCR System (Applied Biosystems) using
SYBR Green and specific forward and reverse
primers. The transcript levels were normalized by
the glyceraldehyde3phosphate dehydrogenase
(GAPDH) transcript level. The respective forward
and reverse primer sequences were : PFN1, 5′
tcactgtcaccatgactgcc3′ and 5′gaggtcagtactgggaac
gc3′ ; RARα, 5′gaaccggactcagatgcaca3′ and 5′tc
ctgtcggtctccacagat3′ ; Nck 1, 5′gaagtttgctggcaatcc
ttgg3′ and 5′ttggcgaagattcactgtcacg3′ ; GAPDH,
5’agaaggtggtgaagcaggcat3’ and 5’cgaaggtggaaga
gtgggagttg3’.

Gene knockdown and overexpression
RARαsiRNA, PFN1siRNA, and controlsiRNA (In
vitrogen) were used for knockdown experiments as
previously described.17, 21 The vector constructs ex
pressing PFN1 were generated in the pCI mammal
ian expression vector (Promega KK, Tokyo, Japan).
OBs were transfected with either siRNAs or expres
sion vectors using Lipofectamine 3000 (Invitrogen)
according to the manufacturer’s protocols. Total
RNA was extracted at 24 h after transfection. In
overexpression experiments, pCI mammalian ex
pression vector without a target gene was used as
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a control.

Statistical analysis
Data are expressed as mean and standard devia
tion (SD) and were analyzed by Student’s ttest or
analysis of variance. Tukey’s Honestly Significant
Difference test was applied as a posthoc test. The
level of statistical significance was set at p＜0.05.
All analyses were performed using SPSS software
(SPSS Japan, Tokyo, Japan).

RESULTS

RA mainly promotes OB migration through
RARα
Cell migration assays were performed under a re
duced serum condition (1% FBS) to exclude the in
fluences of cell proliferation and endogenous RA in
FBS as much as possible. The cell migration as
says confirmed that addition of RA accelerated OB
migration at 24 h (Fig. 1 A). To further confirm this
result, the scratch widths were quantified. The
scratch width at 24 h was significantly reduced by

Fig. 1 RA promoting cell migration of OBs mainly via RARα. (A) Representative images of OB migration at 0 and 24 h af
ter addition of RA (1 μM) or DMSO. (B) Scratch widths at 0 and 24 h after addition of RA (1 μM) or DMSO (Mean±SD,
n＝5, *p＜0.05). (C) Scratch widths at 0 and 24 h after addition of DMSO or EtOH (Mean±SD, n＝5). (D) Scratch widths
at 0 and 24 h after addition of RA with RARα antagonist (BMS 195614 ; 1 μM) or DMSO (Mean±SD). (E) Scratch widths
at 0 and 24 h after addition of RA with RARβ/γ antagonist (CD 2665 ; 0.3 μM) or DMSO (Mean±SD, n＝5, *p＜0.05).
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addition of RA compared with addition of DMSO
(Fig. 1 B). Thus, we concluded that RA promotes
OB migration. There was no difference in the
scratch widths when RA was diluted in DMSO or
EtOH (Fig. 1 C). Therefore, all agonists and antago
nists were diluted in DMSO to avoid the use of vari
ous solvents in the study.
Osteoblasts express the conventional RARs, in

cluding all three of the subtypes, RARα, RARβ and
RARγ.13 To identify the main subtype that affects
RAactivated OB migration, selective antagonists
were used for cell migration assays. RARα antago
nist BMS 195614 inhibited RAinduced OB migra
tion at 24 h (Fig. 1 D), while RARβ/γ antagonist CD
2665 had no effect (Fig. 1 E). These results sug
gest that RA mainly promotes OB migration through
RARα. To investigate the side effects of FBS on
RA signaling, 10% charcoaltreated FBS, containing
reduced RA, was added to the cell medium instead
of standard FBS. Similar to the results under the
reduced serum condition, RA plus RARα antago

nist, but not RA plus RARβ/γ antagonist, promoted
OB cell migration in cell medium containing
charcoaltreated FBS (Figs. 2 A2 C). Thus, RA it
self can affect OB cell migration.

Gene knockdown of RARα inhibits RAinduced
OB migration
Gene knockdown of RARα was performed to fur
ther investigate the role of RARα in OB migration.
RARαsiRNA transfection significantly reduced
mRNA expression of RARα compared with control
siRNA transfection (Fig. 3 A). In RARαknockdown
(KD) cells, RA did not reduce the scratch width at
24 h after addition of RA (Fig. 3 B). Similar results
were obtained in cell medium supplemented with
charcoaltreated FBS (Fig. 3 C). Thus, RARα is
critical for RAinduced OB migration.

Activation of RARα by RA upregulates mRNA
expression of PFN1
Next, we investigated the RA signaling pathway for

Fig. 2 RA promotion of cell migration of OBs in αMEM supplemented with charcoal treatedFBS. (A) Scratch widths at
0 and 24 h after addition of RA (1 μM) or DMSO in αMEM supplemented with charcoaltreated FBS (αMEM with chFBS)
(Mean±SD, n＝5, *p＜0.05). (B) Scratch widths at 0 and 24 h after addition of RA with RARα antagonist (BMS 195614 ;
1 μM) or DMSO in αMEM with chFBS (Mean±SD, n＝5). (C) Scratch widths at 0 and 24 h after addition of RA with
RARβ/γ antagonist (CD 2665 ; 0.3 μM) or DMSO in αMEM with chFBS (Mean±SD, n＝5, *p＜0.05).
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OB migration. RA regulates the expression of sev
eral genes via translocation of RARs to the nucleus
upon RA binding.13 Our previous studies showed
that two actin cytoskeletonrelated molecules, PFN1
and Nck 1, regulate osteoblast migration.17, 19 Thus,
we focused our efforts on these genes and investi

gated their expression levels in RAtreated and
RAR agonisttreated OBs. Addition of RA upregu
lated mRNA expression of PFN1, but not Nck 1
(Figs. 4 A, B). Similarly, addition of RARα agonist
BMS 753 upregulated mRNA expression of PFN1
(Fig. 4 A). In contrast, RARβ/γ agonist CD 2665

Fig. 3 RARα knockdown inhibition of RAinduced OB migration. (A) RARα knockdown by siRNA transfection, showing
reduced expression of RARα at 24 h after transfection of controlsiRNA or RARαsiRNA (Mean±SD, n＝5, *p＜0.05).
(B) Scratch widths at 0 and 24 h after addition of RA (1 μM) or DMSO in RARαKD cells (Mean±SD, n＝5). (C) Scratch
widths at 0 and 24 h after addition of RA (1 μM) or DMSO in RARαKD cells in αMEM with chFBS (Mean±SD, n＝5).

Fig. 4 Upregulation of the expression of PFN1 by the activation of RARα and the addition of RA. (A) Expression levels
of PFN 1 in OBs treated with DMSO, RA, RARα agonist (BMS 753 ; 100 nM) or RARβ/γ agonist (adapalene ; 100 nM)
(Mean±SD, n＝5, *p＜0.05). (B) Expression levels of Nck 1 in OBs treated with DMSO, RA, RARα agonist (BMS 753 ;
100 nM), or RARβ/γ agonist (adapalene ; 100 nM) in OBs (Mean±SD, n＝5).
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had no effect on mRNA expression of PFN1. Nei
ther RARα agonist nor RARβ/γ agonist affected
mRNA expression of Nck 1 (Fig. 4 B). These results
suggest that RA upregulates PFN1 mRNA expres
sion via RARα signaling.

Overexpression of PFN1 improves OB migration
In our previous study, knockdown of PFN1 mRNA
inhibited migration in primary osteoblasts.17 We per
formed overexpression experiments to further con

firm the role of PFN1 in cell migration. PFN1 mRNA
expression was increased compared with the con
trol at 24 h after transfection (Fig. 5 A). In PFN1
overexpressing OBs, the scratch width was re
duced compared with that in OBs after control vec
tor transfection (Fig. 5 B). In addition to the overex
pression experiments, PFN1 mRNA was knocked
down by PFN1siRNA transfection. The mRNA ex
pression of PFN1 was reduced compared with the
control at 24 h after PFN1siRNA transfection (Fig.

Fig. 5 Promotion of OB migration by increased expression of PFN1. (A) Increased expression of PFN1 at 24 h after
transfection with control vector or PFN1 expression vector (Mean±SD, n＝5, *p＜0.05). (B) Scratch widths at 0 and 24
h in control or PFN1overexpressing OBs without addition of RA (Mean±SD, n＝5, *p＜0.05). (C) Reduction of expres
sion of PFN1 at 24 h after transfection of controlsiRNA or PFN1siRNA (Mean±SD, n＝3, *p＜0.05). (D) Scratch
widths at 0 and 48 h in control or PFN1knockdown OBs without addition of RA (Mean±SD, n＝5, *p＜0.05). (E)
Scratch widths at 24 h in control or PFN1knockdown OBs with or without addition of RA (Mean±SD, n＝5, *p＜0.05).
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5 C). The reduced PFN1 mRNA expression inhib
ited OB migration (Fig. 5 D). Addition of RA pro
moted OB migration, and the effects were reduced
in PFN1knockdown OBs (Fig. 5 E). These data
suggest that an increase in PFN1 mRNA expres
sion improves OB migration.

DISCUSSION

The present study demonstrates that RA promotes
cell migration through upregulation of PFN1 expres
sion via RARα in OBs. The effects of RA on vari
ous cellular responses of osteoblasts have been
extensively investigated.2, 1416 However, even though
the role of RA in osteoblast differentiation has been
investigated by many research groups,1, 1113 its ef
fect on OB migration is not well established. The
present results suggest a positive role of RA in
bone metabolism.
RA signaling is one of most important mecha

nisms for bone metabolism. As an example for
bone regeneration, RA is critical in deer antler re
modeling.4 Specifically, RA is present in the grow
ing antler and regulates the differentiation of chon
drocytes, osteoblasts, and osteoclasts in vivo and
in vitro. During antler regeneration, these cells mi
grate to sites of regeneration and activate bone re
modeling. The present study showed that RA
induced cell signaling improved OB migration.
Therefore, in bone regeneration, RA will affect not
only differentiation of osteoblasts, but also cell mi
gration. For bone fracture healing, improvement of
osteoblast functions and gathering of cells to the
fracture point both have therapeutic effects.22, 23 Our
findings may be of help in further understanding the
mechanisms of bone regeneration and fracture
healing.
PFN1 is an actin monomerbinding protein that

has been implicated in various cellular functions, in
cluding cell migration.24 In our previous study, PFN1
deficiency suppressed osteoblast migration and re
duced stress fibers composed of actin filaments.17

The present data support these functions of PFN1.
Both RAinduced upregulation of PFN1 and overex
pression of PFN1 were related to improved OB mi
gration, while knockdown of PFN1 reduced the ef

fects of RA on OB migration. Although RA can
regulate the expression of many genes,13 PFN1 is
one of the factors through which RA promotes cell
migration.
RA regulates the expression of its target genes

by binding to heterodimers of RARs and RXRs. RA
can also activate other nuclear receptors, such as
peroxisome proliferatoractivated receptor β /γ
(PPARβ/γ). Although PPARs can bind to RA, their
affinities for RA are weaker than those of RARs.25

Although the effects of PPARγ on RAinduced cell
migration were not examined in this study, PPARγ
is expressed in bone and its activation inhibits os
teoblast differentiation.26, 27 Based on the finding that
RARα knockdown inhibited RAinduced cell migra
tion, the effects of PPARγ on osteoblast migration
are deemed to be low. The relationship between
RA and PPARγ will be further assessed in future
studies.
It is noteworthy that a reduced serum condition

(1% FBS) was used for the cell migration assays in
the present study. Under standard serum condition
(10% FBS), the scratch widths showed no signifi
cant difference between addition of DMSO and RA
(data not shown). The reason could be the high
amount of endogenous RA in FBS. The data from
assays with charcoaltreated FBS (Figs. 2 AC) also
support this speculation. Saturation of RARs by the
RA present in 10% FBS may yield no discernable
difference in scratch widths regardless of whether
external RA is added. Therefore, RA should be
used under limited conditions for improvement of
OB migration.
In summary, our results demonstrate a role for

RA in osteoblast migration. RA regulated osteoblast
migration via RARα signaling and subsequent
upregulation of PFN1 mRNA expression. Overex
pression of PFN1 promoted cell migration. The pre
sent findings improve our understanding of bone bi
ology and may be useful tools for pharmacological
and therapeutic regulation of cell migration in bone.
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